Parity reversing involutions on plane trees and 2-Motzkin paths

نویسندگان

  • William Y. C. Chen
  • Louis W. Shapiro
  • Laura L. M. Yang
چکیده

The problem of counting plane trees with n edges and an even or an odd number of leaves was studied by Eu, Liu and Yeh, in connection with an identity on coloring nets due to Stanley. This identity was also obtained by Bonin, Shapiro and Simion in their study of Schröder paths, and it was recently derived by Coker using the Lagrange inversion formula. An equivalent problem for partitions of sets was independently studied by Klazar. We present three parity reversing involutions for the identity, the first is stated in terms of unlabelled plane trees, the second is formulated by labelled plane trees and the third is described by 2-Motzkin paths. AMS Classification: 05A15, 05C30, 05C05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted 2-Motzkin Paths

This paper is motivated by two problems recently proposed by Coker on combinatorial identities related to the Narayana polynomials and the Catalan numbers. We find that a bijection of Chen, Deutsch and Elizalde can be used to provide combinatorial interpretations of the identities of Coker when it is applied to weighted plane trees. For the sake of presentation of our combinatorial corresponden...

متن کامل

Secondary structures, plane trees and Motzkin numbers

A bijective correspondence is established between secondary structures of a given rank and size and plane trees satisfying certain additional conditions. The correspondence is then used to obtain new combinatorial interpretations of Motzkin numbers in terms of plane trees and Dyck paths.

متن کامل

The butterfly decomposition of plane trees

We introduce the notion of doubly rooted plane trees and give a decomposition of these trees, called the butterfly decomposition which turns out to have many applications. From the butterfly decomposition we obtain a oneto-one correspondence between doubly rooted plane trees and free Dyck paths, which implies a simple derivation of a relation between the Catalan numbers and the central binomial...

متن کامل

Pattern avoidance and Boolean elements in the Bruhat order on involutions

We show that the principal order ideal of an element w in the Bruhat order on involutions in a symmetric group is a Boolean lattice if and only if w avoids the patterns 4321, 45312 and 456123. Similar criteria for signed permutations are also stated. Involutions with this property are enumerated with respect to natural statistics. In this context, a bijective correspondence with certain Motzkin...

متن کامل

Pattern Avoidance and the Bruhat Order on Involutions

We show that the principal order ideal below an element w in the Bruhat order on involutions in a symmetric group is a Boolean lattice if and only if w avoids the patterns 4321, 45312 and 456123. Similar criteria for signed permutations are also stated. Involutions with this property are enumerated with respect to natural statistics. In this context, a bijective correspondence with certain Motz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2006